Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts.

نویسندگان

  • Kiyoshi Yamagami
  • Toru Oka
  • Qi Wang
  • Takamaru Ishizu
  • Jong-Kook Lee
  • Keiko Miwa
  • Hiroshi Akazawa
  • Atsuhiko T Naito
  • Yasushi Sakata
  • Issei Komuro
چکیده

Although cardiac fibrosis causes heart failure, its molecular mechanisms remain elusive. In this study, we investigated the mechanisms of cardiac fibrosis and examined the effects of the antifibrotic drug pirfenidone (PFD) on chronic heart failure. To understand the responsible mechanisms, we generated an in vivo pressure-overloaded heart failure model via transverse aortic constriction (TAC) and examined the effects of PFD on chronic-phase cardiac fibrosis and function. In the vehicle group, contractile dysfunction and left ventricle fibrosis progressed further from 4 to 8 wk after TAC but were prevented by PFD treatment beginning 4 wk after TAC. We isolated cardiac fibroblasts and vascular endothelial cells from the left ventricles of adult male mice and investigated the cell-type-specific effects of PFD. Transforming growth factor-β induced upregulated collagen 1 expression via p38 phosphorylation and downregulated claudin 5 (Cldn5) expression in cardiac fibroblasts and endothelial cells, respectively; both processes were inhibited by PFD. Moreover, PFD inhibited changes in the collagen 1 and Cldn5 expression levels, resulting in reduced fibrosis and serum albumin leakage into the interstitial space during the chronic phase in TAC hearts. In conclusion, PFD inhibited cardiac fibrosis by suppressing both collagen expression and the increased vascular permeability induced by pressure overload.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pirfenidone controls the feedback loop of the AT1R/p38 MAPK/renin-angiotensin system axis by regulating liver X receptor-α in myocardial infarction-induced cardiac fibrosis

Pirfenidone (PFD), an anti-fibrotic small molecule drug, is used to treat fibrotic diseases, but its effects on myocardial infarction (MI)-induced cardiac fibrosis are unknown. The aim of this study was to determine the effects of PFD on MI-induced cardiac fibrosis and the possible underlying mechanisms in rats. After establishment of the model, animals were administered PFD by gavage for 4 wee...

متن کامل

Transforming Growth Factor- Function Blocking Prevents Myocardial Fibrosis and Diastolic Dysfunction in Pressure-Overloaded Rats

Background—Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. Methods and Results—Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to myofibr...

متن کامل

Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats.

BACKGROUND Excessive myocardial fibrosis impairs cardiac function in hypertensive hearts. Roles of transforming growth factor (TGF)-beta in myocardial remodeling and cardiac dysfunction were examined in pressure-overloaded rats. METHODS AND RESULTS Pressure overload was induced by a suprarenal aortic constriction in Wistar rats. Fibroblast activation (proliferation and phenotype transition to...

متن کامل

Hypertensive myocardial fibrosis and diastolic dysfunction: another model of inflammation?

Excessive myocardial fibrosis deteriorates diastolic function in hypertensive hearts. Involvement of macrophages is suggested in fibrotic process in various diseased situations. We sought to examine the role of macrophages in myocardial remodeling and cardiac dysfunction in pressure-overloaded hearts. In Wistar rats with suprarenal aortic constriction, pressure overload induced perivascular mac...

متن کامل

In Vitro Effects of Pirfenidone on Cardiac Fibroblasts: Proliferation, Myofibroblast Differentiation, Migration and Cytokine Secretion

Cardiac fibroblasts (CFs) are the primary cell type responsible for cardiac fibrosis during pathological myocardial remodeling. Several studies have illustrated that pirfenidone (5-methyl-1-phenyl-2-[1H]-pyridone) attenuates cardiac fibrosis in different animal models. However, the effects of pirfenidone on cardiac fibroblast behavior have not been examined. In this study, we investigated wheth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 309 3  شماره 

صفحات  -

تاریخ انتشار 2015